ABI4 activates DGAT1 expression in Arabidopsis seedlings during nitrogen deficiency.

نویسندگان

  • Yang Yang
  • Xiangchun Yu
  • Lianfen Song
  • Chengcai An
چکیده

Triacylglycerol (TAG) is the major seed storage lipid and is important for biofuel and other renewable chemical uses. Acyl-coenzyme A:diacylglycerol acyltransferase1 (DGAT1) is the rate-limiting enzyme in the TAG biosynthesis pathway, but the mechanism of its regulation is unknown. Here, we show that TAG accumulation in Arabidopsis (Arabidopsis thaliana) seedlings increased significantly during nitrogen deprivation (0.1 mm nitrogen) with concomitant induction of genes involved in TAG biosynthesis and accumulation, such as DGAT1 and OLEOSIN1. Nitrogen-deficient seedlings were used to determine the key factors contributing to ectopic TAG accumulation in vegetative tissues. Under low-nitrogen conditions, the phytohormone abscisic acid plays a crucial role in promoting TAG accumulation in Arabidopsis seedlings. Yeast one-hybrid and electrophoretic mobility shift assays demonstrated that ABSCISIC ACID INSENSITIVE4 (ABI4), an important transcriptional factor in the abscisic acid signaling pathway, bound directly to the CE1-like elements (CACCG) present in DGAT1 promoters. Genetic studies also revealed that TAG accumulation and DGAT1 expression were reduced in the abi4 mutant. Taken together, our results indicate that abscisic acid signaling is part of the regulatory machinery governing TAG ectopic accumulation and that ABI4 is essential for the activation of DGAT1 in Arabidopsis seedlings during nitrogen deficiency.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CHOTTO1, a double AP2 domain protein of Arabidopsis thaliana, regulates germination and seedling growth under excess supply of glucose and nitrate.

Arabidopsis chotto1 (cho1) mutants show resistance to (-)-R-ABA, an ABA analog, during germination and seedling growth. Here, we report cloning and characterization of the CHO1 gene. cho1 mutants showed only subtle resistance to (+)-S-ABA during germination. The cho1 mutation acts as a strong enhancer of the abi5 mutant, whereas the cho1 abi4 double mutant showed ABA resistance similar to the a...

متن کامل

Arabidopsis RAV1 transcription factor, phosphorylated by SnRK2 kinases, regulates the expression of ABI3, ABI4, and ABI5 during seed germination and early seedling development.

The phytohormone abscisic acid (ABA) modulates a number of processes during plant growth and development. In this study, the molecular mechanism of Arabidopsis RAV (Related to ABI3/VP1) transcription factor RAV1 involving ABA signaling was investigated. RAV1-underexpressing lines were more sensitive to ABA than wild-type plants during seed germination and early seedling development, whereas RAV...

متن کامل

Arabidopsis mutants deficient in diacylglycerol acyltransferase display increased sensitivity to abscisic acid, sugars, and osmotic stress during germination and seedling development.

Arabidopsis seeds store triacylglycerol (TAG) as the major carbon reserve, which is used to support postgerminative seedling growth. Diacylglycerol acyltransferase (DGAT) catalyzes the final step in TAG synthesis, and two isoforms of DGAT have previously been identified in Arabidopsis. It has been shown that DGAT1 plays an important role in seed development because Arabidopsis with mutations at...

متن کامل

The Arabidopsis trehalose-6-P synthase AtTPS1 gene is a regulator of glucose, abscisic acid, and stress signaling.

In Arabidopsis (Arabidopsis thaliana), trehalose is present at almost undetectable levels, excluding its role as an osmoprotectant. Here, we report that overexpression of AtTPS1 in Arabidopsis using the 35S promoter led to a small increase in trehalose and trehalose-6-P levels. In spite of this, transgenic plants displayed a dehydration tolerance phenotype without any visible morphological alte...

متن کامل

An Arabidopsis mitochondria-localized RRL protein mediates abscisic acid signal transduction through mitochondrial retrograde regulation involving ABI4

The molecular mechanisms of abscisic acid (ABA) signalling have been studied for many years; however, how mitochondria-localized proteins play roles in ABA signalling remains unclear. Here an Arabidopsis mitochondria-localized protein RRL (RETARDED ROOT GROWTH-LIKE) was shown to function in ABA signalling. A previous study had revealed that the Arabidopsis mitochondria-localized protein RRG (RE...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Plant physiology

دوره 156 2  شماره 

صفحات  -

تاریخ انتشار 2011